

GE-Housatonic River Rest of River Human Health Risk Assessment

Margaret McDonough
US Environmental Protection
Agency

 What is the purpose of a Human Health Risk Assessment (HHRA)?

What is a Human Health Risk Assessment?

Purpose of the HHRA

- Describe Risks
- Provide information that can be used to develop cleanup goals

Risk = Exposure + Toxicity

- Risk Assessment
 - Method of determining potential health risk in absence of any cleanup
 - Considers current and future potential land use and activities

Risk Assessment

- 1 Hazard Identification
- 2 Exposure Assessment
- 3 Toxicity Assessment
- 4 Risk Characterization

CLEANUP DECISION

Step 1 – Hazard Identification

- "Full suite" chemical analysis
- Site contaminants are:
 - PCBs
 - Dioxin-like PCBs
 - Dioxins and furans

- Who might be exposed?
 - Children
 - Adults

- How can people be exposed?
 - Ingestion
 - Dermal absorption
 - Eating foods

- How much exposure depends on:
 - Concentration
 - Contact rate
 - How often exposed
 - How long exposed

- Exposure Information
 - MA DPH survey
 - Field observations
 - Other waterbodies
 - EPA guidance

- Average Exposure
 - Central Tendency Exposure (CTE)
- Highly Exposed Individual
 - Reasonable Maximum Exposure (RME)
- Current and future potential exposure are considered

Step 3 Toxicity Assessment

- Cancer effects
- Noncancer effects

Step 4 - Risk Characterization

- Risk Characterization
 - Combines Exposure and Toxicity Assessments
 - Describes risks numerically

Toxicity Assessment Cancer

- Quantitatively assessed:
 - PCBs
 - TEQ (Toxic Equivalence)
 - Dioxin-like PCBs + Dioxins + Furans

- Cancer Slope Factor (CSF)
 - estimate of potency

Risk Characterization Cancer Risk

- Increased probability of getting cancer over a lifetime
 - Cancer slope factor x exposure dose
- Probability
 - 1 in a million chance
 - 1 in 1,000,000
 - 1E-06
 - 1 x 10⁻⁶

Toxicity Assessment Noncancer

- Quantitatively assessed:
 - PCBs
- Reference Dose (RfD)
 - Level without appreciable risk

Risk Characterization Noncancer Hazard

- Compares site exposure to level without appreciable risk
- Hazard Index = <u>site exposure</u>
 Reference Dose
- HI < 1, adverse effect unlikely

Exposure Scenarios